--- title: "Using ssd4mosaic's functions in R" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Using ssd4mosaic's functions in R} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE, fig.width = 5, fig.height = 4 ) ``` ```{r setup, eval = TRUE} library(ssd4mosaic) ``` When using the MOSAIC SSD web application, a code is provided after each analysis to reproduce the same results directly in R. Here is an example of censored data species sensitivity distribution analysis using `{ssd4mosaic}` functions. ## Defining the inputs ```{r data_setup, eval = TRUE} # Data creation # Most often, you would archive the same result by reading a table file with a # function akin to utils::read.delim() data <- ssd4mosaic::fluazinam # Which distribution to fit to the data. # See get_fits function documentation for possible options distributions <- list("lnorm") # Whether to display the results plots with a logscale x-axis logscale <- TRUE # Concentration unit for plots labels unit <- "\u03bcg/L" ``` ## Fitting to the data ```{r fitting, eval = TRUE} ## model fitting fits <- ssd4mosaic::get_fits(data, distributions, TRUE) ## bootstrapping bts <- ssd4mosaic::get_bootstrap(fits)[[1]] ``` ## Extracting information from the fit ```{r fit_info, eval = TRUE} ## Model parameters lapply(fits, summary) ## HCx values lapply(bts, quantile, probs = c(0.05, 0.1, 0.2, 0.5)) ``` ```{r plots, eval = FALSE} ## CDF plot with confidence intervals p <- ssd4mosaic::base_cdf(fits, unit = unit, logscale = logscale) ssd4mosaic::add_CI_plot(p, bts, logscale) ## CDF plot with species names ssd4mosaic::options_plot(fits, unit, logscale, data, use_names = TRUE) ## CDF plot colored by group ssd4mosaic::options_plot(fits, unit, logscale, data, use_groups = TRUE) ```